A sequential formula for electronic coupling in long range bridge-assisted electron transfer: Formulation of theory and application to alkanethiol monolayers

نویسندگان

  • Chao-Ping Hsu
  • R. A. Marcus
  • Arthur Amos
چکیده

A recursion relation is formulated for the Green’s function for calculating the effective electron coupling in bridge-assisted electronic transfer systems, within the framework of the tight-binding Hamiltonian. The recursion expression relates the Green’s function of a chain bridge to that of the bridge that is one unit less. It is applicable regardless of the number of orbitals per unit. This method is applied to the system of a ferrocenylcarboxy-terminated alkanethiol on the Au~111! surface. At larger numbers of bridge units, the effective coupling strength shows an exponential decay as the number of methylene~–CH2–! units increases. This sequential formalism shows numerical stability even for a very long chain bridge and, since it uses only small matrices, requires much less computer time for the calculation. Identical bridge units are not a requirement, and so the method can be applied to more complicated systems. © 1997 American Institute of Physics. @S0021-9606~97!01802-3#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional

Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PC...

متن کامل

Unusually rapid heterogeneous electron transfer through a saturated bridge 18 bonds in length.

Ferrocene modified self-assembled monolayers of a novel saturated norbornylogous bridge, 21.3 A long, demonstrated unusually rapid rates of heterogeneous electron transfer, three orders of magnitude faster than the equivalent length alkanethiol.

متن کامل

Heterogeneous electron-transfer kinetics for ruthenium and ferrocene redox moieties through alkanethiol monolayers on gold.

The standard heterogeneous electron-transfer rate constants between substrate gold electrodes and either ferrocene or pentaaminepyridine ruthenium redox couples attached to the electrode surface by various lengths of an alkanethiol bridge as a constituent of a mixed self-assembled monolayer were measured as a function of temperature. The ferrocene was either directly attached to the alkanethiol...

متن کامل

Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures

Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ para...

متن کامل

Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures

Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996